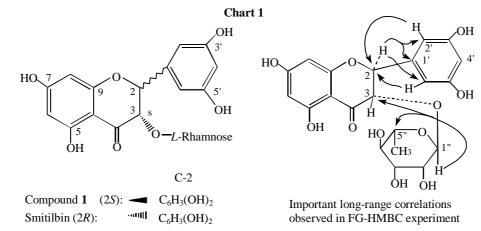
A Flavonol Glycoside from Smilax glabra

Ting CHEN¹*, Jian Xin LI², Yu CAI³, Qiang XU^{3,4}

¹Department of Chinese Medicinal Prescription, China Pharmaceutical University, Nanjing 210038 ²Analytical & Technology Department, Kobe Technical Center, Procter & Gamble Asia, Kobe 658-0032, Japan ³Department of Pharmacology for Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009


⁴State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093

Abstract: A new flavonol glycoside, named neosmitilbin was isolated form the rhizome of *Smilax glabra*. Its structure and absolute configuration were elucidated on the basis of spectroscopic studies.

Keywords: Smilax glabra, neosmitilbin, flavonol.

The rhizome of *Smilax glabra* (Liliaceae) is a well-known traditional chinese drug and has been extensively used to treat syphilis, acute bacillary dysentery, acute and chronic nephritis, *etc.*¹. In our previous studies on this plant^{2,3}, we have characterized a new flavonol rhamnoside (smitilbin), five new phenylpropanoid glycosides (smiglaside A-E), together with 6 known compounds and found that flavanoids possess potent activity in protecting immunological hepatocyte damage. In the continuing study, we isolated a new flavonol glycoside, neosmitilbin **1**. The present communication describes the structure elucidation of this new compound.

Compound 1 was obtained as colorless needles, mp 167-168°C, $[\alpha]_{D}^{25}$ -288.7 (*c* 0.1, MeOH), IR (KBr) v cm⁻¹: 3364 (OH), 2630, 1643 (C=O), 1258, 1029 and 824. The negative ion FAB-MS showed the quasi-molecular ion peak at m/z 449 [M-H] and its molecular formula was determined to be $C_{21}H_{22}O_{11}$ [(M-H) 449.1107, calcd. as

Ting CHEN et al.

 $C_{21}H_{21}O_{11}$, 449.1084] by high resolution FAB-MS. The UV [(MeOH) λ_{max} (log ε) nm: 227 (4.203), 291 (4.312)] and ¹H-NMR spectra suggested that compound 1 was a flavonol and possessed a hexose. On acid hydrolysis, compound 1 afforded rhamnose that was identified as α-L-rhamnose by detailed analysis of NMR data.

Extensive analysis of the ¹H-NMR data of 1 (Table 1) with aid of ¹H-¹H COSY indicated that 1 possessed 5, 7-disubstituted A-ring and 3', 5"-disubstituted B-ring, which was identical with smitilbin². However, two oxygen-bearing methine protons assignable to 2 and 3 positions of C-ring (δ_H 4.98, 1H, d, J=11.4Hz, 2-H; 4.62, 1H, d, J=11.4Hz, 3-H) showed a big J value in comparison with that of smitilbin (J=2.0Hz, 2R, 3S), revealing 2, 3 protons to be *trans*. Furthermore, the remarkable upfield shifts of H-5" and H₃-6" of rhamnose due to the aromatic shielding effect contributed by B-ring, and negative $[\alpha]_D$ led us to conclude the configurations at C2 and C3 to be 2S, $3S^{4-7}$.

In order to determine the linkage of rhamnose and aglycone, FG (field gradient) HMBC experiment was conducted. A clear correlation between anomeric proton ($\delta_{\rm H}$ 5.15, d, 1H, J=1.5) and C-3 ($\delta_{\rm C}$ 76.92) deduced that rhamnose was connected to C-3 of aglycone. Other important correlations were depicted in Chart 1 by arrows.

Based on the above findings, the structure of 1 was determined as represented in Chart 1, a diastereomer of smitilbin, and named neosmitilbin.

No.	$\delta_{\rm C}$	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	No.	$\delta_{\rm C}$	$\delta_{\rm H} ({\rm J~in~Hz})$
2	83.70	4.98, 1H, d, <i>J</i> =11.4	3'	147.48	
3	76.92	4.62, 1H, d, <i>J</i> =11.4	4 ′	116.28	6.80, 1H, s
4	197.67		5'	146.66	
5	165.52		6'	121.00	6.80, 1H, s
6	96.32	5.88, 1H, d, <i>J</i> =2.0	1''	102.88	5.15, 1H, d, <i>J</i> =1.5
7	168.94		2‴	71.94	4.00, 1H, dd, <i>J</i> =3.3, 1.5
8	97.46	5.91, 1H, d, <i>J</i> =2.0	3‴	71.94	3.38, 1H, dd, <i>J</i> =9.6, 3.3
9	164.35		4 ''	73.43	3.19, 1H, t, <i>J</i> =9.6
10	102.04		5″	70.32	2.29, 1H, m
1 ′	129.98		6″	17.92	0.90, 3H, d, <i>J</i> =6.3
2'	115.47	6.97, 1H, s			

 Table 1
 ¹H- and ¹³C-NMR spectral data of compound 1 in CD₃OD

Acknowledgment

We are grateful to Prof. S. Kadota, Institute of Natural Medicine, Toyama Medical & Pharmaceutical University, Japan, for measuring FAB-MS, HR-FAB-MS and $[\alpha]_D$. This study was supported by the National Natural Science Foundation of China, No. 39925041.

References

- Jiangsu New Medical College, Chinese Materia Medica Dictionary (in Chinese), Shanghai 1. Science and Technology Publishing House, Shanghai, 1977, p. 91.
- T. Chen, J. X. Li, J. S. Cao, Q. Xu, K. Komatsu, T. Namba, *Planta Medica*, **1999**, 65, 56. T. Chen, J. X. Li, Q. Xu, *Phytochemistry*, **2000**, 53, 1051.
- 3.
- 4.
- W. Gaffield, A. C. Waiss, Jr, T. Tominaga, J. Org. Chem., 1975, 40, 1057.
 R. Kasai, S. Hirono, W. H. Chou, O. Tanaka, F. H. Chen, Chem. Pharm. Bull., 1988, 36, 5. 4167
- J. D. Britto, V. S. Manickam, S. Gopalakrishnan, T. Ushioda, N. Tanaka, Chem. Pharm. Bull., 6. 1995, 43, 338.
- 7. W. Gaffield, Chem. Pharm. Bull., 1996, 44, 1102.

Received 3 September, 2001